Dynamics of Current-based, Poisson Driven, Integrate-and-fire Neuronal Networks∗
نویسندگان
چکیده
Synchronous and asynchronous dynamics in all-to-all coupled networks of identical excitatory, current-based, integrate-and-fire (I&F) neurons with delta-impulse coupling currents and Poisson spike-train external drive are studied. Repeating synchronous total firing events, during which all the neurons fire simultaneously, are observed using numerical simulations and found to be the attracting state of the network for a large range of parameters. Mechanisms leading to such events are then described in two regimes of external drive: superthreshold and subthreshold. In the former, a probabilistic argument similar to the proof of the Central Limit Theorem yields the oscillation period, while in the latter, this period is analyzed via an exit time calculation utilizing a diffusion approximation of the Kolmogorov forward equation. Asynchronous dynamics are observed computationally in networks with random transmission delays. Neuronal voltage probability density functions (PDFs) and gain curves—graphs depicting the dependence of the network firing rate on the external drive strength—are analyzed using the steady solutions of the self-consistency problem for a Kolmogorov forward equation. All the voltage PDFs are obtained analytically, and asymptotic solutions for the gain curves are obtained in several physiologically relevant limits. The absence of chaotic dynamics is proved for the type of network under investigation by demonstrating convergence in time of its trajectories.
منابع مشابه
Cascade-induced synchrony in stochastically driven neuronal networks.
Perfect spike-to-spike synchrony is studied in all-to-all coupled networks of identical excitatory, current-based, integrate-and-fire neurons with delta-impulse coupling currents and Poisson spike-train external drive. This synchrony is induced by repeated cascading "total firing events," during which all neurons fire at once. In this regime, the network exhibits nearly periodic dynamics, switc...
متن کاملFokker-Planck description of conductance-based integrate-and-fire neuronal networks.
Steady dynamics of coupled conductance-based integrate-and-fire neuronal networks in the limit of small fluctuations is studied via the equilibrium states of a Fokker-Planck equation. An asymptotic approximation for the membrane-potential probability density function is derived and the corresponding gain curves are found. Validity conditions are discussed for the Fokker-Planck description and v...
متن کاملPredicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival.
Reduced models of neuronal activity such as integrate-and-fire models allow a description of neuronal dynamics in simple, intuitive terms and are easy to simulate numerically. We present a method to fit an integrate-and-fire-type model of neuronal activity, namely a modified version of the spike response model, to a detailed Hodgkin-Huxley-type neuron model driven by stochastic spike arrival. I...
متن کاملStatistical Analysis of Neural Data: the Integrate-and-fire Neuron and Other Continuous-time State-space Models *
3 The “Fokker-Planck” equation is a partial differential equation that controls the evolution of the forward (and backward) probabilities 9 3.1 Deriving the “free” Fokker-Planck equation (no spike observations) . . . . . . 10 3.1.1 Conductance-based model . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.2 Computing mean firing rates in a network of GLM neurons . . . . . . 13 3.2 Incorpo...
متن کاملMemristor Bridge Synapse Application for Integrate and Fire and Hodgkin-Huxley Neuron Cell
Memory resistor or memristor is already fabricated successfully using current nano dimension technology. Based on its unique hysteresis, the amount of resistance remains constant over time, controlled by the time, the amplitude, and the polarity of the applied voltage. The unique hysteretic current-voltage characteristic in the memristor causes this element to act as a non-volatile resistive me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008